Zahlenspirale
Erzeugt mit Javascript eine Zahlenspirale von 0 bis 400
Der hier verwendete Code
HTMLResult Skip Results Iframe
EDIT ON
<!DOCTYPE html>
<html lang="de">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=5, minimum-scale=1" />
<title>spiral</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/svg.js/2.7.1/svg.min.js"></script>
<style>
* {
box-sizing: border-box;
padding:0;
margin:0;
}
html, body {
width:100%;
height:100%;
overflow:hidden;
}
#svg svg {
width:100%;
height:100%;
}
</style>
<script>
function spiral(n)
{
let a = Math.floor((Math.floor(Math.sqrt(n))+1)/2)*2-1, // top number in group
b = Math.floor((n-(a*a))/(Math.abs(a)+1)), // direction number (0,1,2,3)
c = (a*a) + (b * (a+1)), // top number in package
x_1 = (n-c-((a+1)/2)+1),
y_1 = (a+1)/2,
x_2 = (a+1)/2,
y_2 = (-1)*(n-c-((a+1)/2)+1),
x_3 = (-1)*(n-c-((a+1)/2)+1),
y_3 = (-1)*(a+1)/2,
x_4 = (-1)*(a+1)/2,
y_4 = (n-c-((a+1)/2)+1);
return [
Math.pow(Math.sign(b-1),2)*Math.pow(Math.sign(b-2),2)*Math.pow(Math.sign(b-3),2)*x_1 +
Math.pow(Math.sign(b-2),2)*Math.pow(Math.sign(b-3),2)*Math.pow(Math.sign(b-0),2)*x_2 +
Math.pow(Math.sign(b-3),2)*Math.pow(Math.sign(b-0),2)*Math.pow(Math.sign(b-1),2)*x_3 +
Math.pow(Math.sign(b-0),2)*Math.pow(Math.sign(b-1),2)*Math.pow(Math.sign(b-2),2)*x_4,
Math.pow(Math.sign(b-1),2)*Math.pow(Math.sign(b-2),2)*Math.pow(Math.sign(b-3),2)*y_1 +
Math.pow(Math.sign(b-2),2)*Math.pow(Math.sign(b-3),2)*Math.pow(Math.sign(b-0),2)*y_2 +
Math.pow(Math.sign(b-3),2)*Math.pow(Math.sign(b-0),2)*Math.pow(Math.sign(b-1),2)*y_3 +
Math.pow(Math.sign(b-0),2)*Math.pow(Math.sign(b-1),2)*Math.pow(Math.sign(b-2),2)*y_4
];
}
let draw = null,
timeouts = [];
SVG.on(document, 'DOMContentLoaded', () => {
redraw();
});
window.addEventListener('resize', () => {
if( draw !== null ) { draw.clear(); }
redraw();
})
function redraw() {
document.body.innerHTML = '<div id="svg"></div>';
if( timeouts.length > 0 )
{
timeouts.forEach((timeouts__value) => {
clearTimeout(timeouts__value);
});
}
let width = window.innerWidth,
height = window.innerHeight,
prev_x = null,
prev_y = null;
draw = SVG('svg').size(width, height);
draw.attr('preserveAspectRatio','xMinYMin meet');
draw.attr('viewBox','0 0 '+width+' '+height);
for(let n = 0; n < 400; n++) {
let timeout = setTimeout(function() {
let result = spiral(n),
x = (width/2)+(40)*result[0],
y = (height/2)-(40)*result[1];
draw.text(n.toString())
.font({ family: 'Helvetica', size: 11, anchor: 'right', leading: '1.1em' })
.attr({ x:x+3, y:y, fill: '#00838f', opacity: 0 })
.animate({ ease: '<>', duration: 500 })
.attr({ x:x+3, y:y, fill: '#00838f', opacity: 1 });
draw.circle(0)
.attr({ cx:x, cy:y, fill: '#00838f' })
.animate({ ease: '<>', duration: 500 })
.attr({ r: 2 });
if( prev_x !== null && prev_y !== null ) {
draw.line(prev_x, prev_y, prev_x, prev_y)
.stroke({ width: 1, color: '#00838f' })
.animate({ ease: '<>', duration: 500 })
.attr({ x1: prev_x, y1: prev_y, x2: x, y2: y });
}
prev_x = x;
prev_y = y;
}, (50 * (n+1)));
timeouts.push(timeout);
}
};
</script>
</head>
<body>
</body>
</html>
<!--
\documentclass[a4paper,landscape,5pt,margin=0in]{article}
\usepackage[legalpaper, landscape, margin=0in]{geometry}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage[latin1]{inputenc}
\pagestyle{empty}
\begin{document}
\newcommand{\vara}{\left \lfloor \left( \frac{\left \lfloor \sqrt{n} \right \rfloor + 1}{2} \right) \right \rfloor \cdot 2 - 1}
\newcommand{\varb}{\left \lfloor \frac{ n - \left( \left( \vara \right)^2 \right) }{ \text{abs}\left( \vara \right) + 1 } \right \rfloor}
\newcommand{\varc}{\left( \left(\vara^2\right) + \left( \varb \cdot \left( \vara + 1 \right) \right) \right)}
\newcommand{\varxone}{\left(n - \varc - \frac{ \vara + 1 }{2}+1\right)}
\newcommand{\varyone}{\left(\frac{ \vara + 1 }{2}\right)}
\newcommand{\varxtwo}{\left(\frac{ \vara + 1 }{2}\right)}
\newcommand{\varytwo}{\left((-1) \cdot n - \varc - \frac{ \vara + 1 }{2}+1\right)}
\newcommand{\varxthree}{\left((-1) \cdot n - \varc - \frac{ \vara + 1 }{2}+1\right)}
\newcommand{\varythree}{\left((-1) \cdot \frac{ \vara + 1 }{2}\right)}
\newcommand{\varxfour}{\left((-1) \cdot \frac{ \vara + 1 }{2}\right)}
\newcommand{\varyfour}{\left( n - \varc - \frac{ \vara + 1 }{2}+1\right)}
$$
\begin{equation}
\begin{split}
f(n)_x = & \text{sgn}\left(\varb - 1\right)^2 \cdot \text{sgn}\left(\varb - 2\right)^2 \cdot \text{sgn}\left(\varb - 3\right)^2 \cdot\\
& \varxone +\\
& \text{sgn}\left(\varb - 2\right)^2 \cdot \text{sgn}\left(\varb - 3\right)^2 \cdot \text{sgn}\left(\varb - 0\right)^2 \cdot\\
& \varxtwo +\\
& \text{sgn}\left(\varb - 3\right)^2 \cdot \text{sgn}\left(\varb - 0\right)^2 \cdot \text{sgn}\left(\varb - 1\right)^2 \cdot\\
& \varxthree +\\
& \text{sgn}\left(\varb - 0\right)^2 \cdot \text{sgn}\left(\varb - 1\right)^2 \cdot \text{sgn}\left(\varb - 2\right)^2 \cdot\\
& \varxfour
\end{split}
\end{equation}
$$
\newpage
$$
\begin{equation}
\begin{split}
f(n)_y = & \text{sgn}\left(\varb - 1\right)^2 \cdot \text{sgn}\left(\varb - 2\right)^2 \cdot \text{sgn}\left(\varb - 3\right)^2 \cdot\\
& \varyone +\\
& \text{sgn}\left(\varb - 2\right)^2 \cdot \text{sgn}\left(\varb - 3\right)^2 \cdot \text{sgn}\left(\varb - 0\right)^2 \cdot\\
& \varytwo +\\
& \text{sgn}\left(\varb - 3\right)^2 \cdot \text{sgn}\left(\varb - 0\right)^2 \cdot \text{sgn}\left(\varb - 1\right)^2 \cdot\\
& \varythree +\\
& \text{sgn}\left(\varb - 0\right)^2 \cdot \text{sgn}\left(\varb - 1\right)^2 \cdot \text{sgn}\left(\varb - 2\right)^2 \cdot\\
& \varyfour
\end{split}
\end{equation}
$$
\end{document}
-->